
Employing simulation to evaluate designs: The APEX approach

Michael A. Freed, Michael G. Shafto, Roger W. Remington
NASA Ames Research Center

Mail Stop 262-4
Moffett Field, CA 94035-1000

{mfreed,mshafto,rremington}@mail.arc.nasa.gov

1 Iterative design

The enormous cost of fielding a complex
human-machine system can be attributed in part
to the cost of discovering and eliminating
usability problems in its design. In general,
evaluation costs increase as the design process
progresses. By the time a system has come into
use, fixing a design problem involves not only
redesigning and re-testing, but also modifying
fielded devices and possibly retraining users. To
manage engineering design costs, large new
systems are usually developed by a process of
iterative design (Gould, 1988). As a design
progresses from idea to fully fielded system,
decisions are evaluated at each stage. If
problems are discovered during evaluation, the
system is partially redesigned and further
evaluation takes place on the new version. This
process is repeated until a satisfactory version
results. Of course, the ability to determine
whether the current version is satisfactory is
limited by the effectiveness of the evaluation
methods employed.

Evaluation methods applicable at a late design
stage are generally more expensive but also
more effective than methods that can be used at
earlier stages. In particular, once a working
prototype of the new system has been
constructed, evaluation by user testing becomes
possible. Observing users employing the system
in a wide range of scenarios and operating
conditions can tell a designer a great deal about
how well it will function once in the field. This
process is widely recommended in discussions of
human factors and routinely practiced in the
design of safety-critical and high-distribution
systems.

However, user testing suffers from a number of
drawbacks and limitations. For instance,

subjects are often more highly motivated than
true end-users and, in some cases, become too
knowledgeable about the developing system to
be useful in discovering certain problems.
Another drawback is cost. When designing new
air traffic control systems, for example, such
tests typically require hiring highly paid expert
controllers as subjects, often for extended
periods (Shafto, 1990; Remington, 1990b). The
limited amount of testing that results from high
cost can stifle innovation, slow development,
and even compromise safety.

Designers can reduce the amount of user testing
required by discovering problems early in the
design process, and thus reducing the number of
design iterations. To discover problems with
usability, the primary early-phase evaluation
method involves checking the design against
human factors guidelines contained in numerous
handbooks developed for that purpose (Smith,
1986). Guidelines have proven useful for some
design tasks, but have a number of fairly well-
known problems (Mosier, 1986). In particular,
guidelines focus on static, relatively superficial
factors affecting human-machine performance
such as text legibility and color discrimination.
But when addressing topics relating to the
dynamic behavior of a system or to the mental
activities of the user, guidelines are often
lacking or are too general to be of much use.
Thus, “for the foreseeable future, guidelines
should be considered as a collection of
suggestions, rather than distilled science or
formal requirements. Understanding users,
testing, and iterative design are indispensable,
costly necessities" (Gould, 1988).

Scenario-based approaches, such as Cognitive
Walkthrough (Polson et al., 1992), “thinking
aloud,” and human simulation modeling, offer
alternative methods for early-stage design

evaluation. These techniques trade off some of
the guideline-based method’s generality for
greater sensitivity to human cognitive factors
and for an increased ability to predict
performance in complex, dynamic task domains.
The idea of a scenario-based approach is to
achieve some of the benefits of user testing at an
early design stage when no usable prototype has
been constructed. Designers follow the behavior
of a real or hypothetical user employing
imaginary or simulated equipment to achieve
specified task goals in specified operating

conditions.

Focusing on specific scenarios allows designers
to consider situation-dependent aspects of
performance such as the varying relevance of
different performance variables, the effects of
changing workload, and the likelihood and
consequences of interactions between a user’s
tasks. However, complexity and dynamic
elements in a task domain pose difficulties for
any scenario-based approach. While an
improvement over guidelines in this respect, all
of these approaches become more difficult to use
in more demanding task domains as task
duration, situation complexity, number of actors,
number of activities that each actor must
perform, and the number of scenarios that need
to be considered all increase.

By exploiting the computer’s speed and
memory, human simulation modeling
overcomes obstacles inherent in other scenario-
based methods and thus has the greatest
potential for predicting performance in more
demanding task environments. A large,
accurate memory overcomes the problem of
tracking innumerable scenario events.
Processing speed helps compensate for the need
to examine more scenarios by, in principle,
allowing each scenario to be carried out more
quickly than in real-time. The computer’s

ability to function continuously adds further to
the number of scenarios that may be explored.
However, despite its potential, human
simulation has been used to inform design
almost exclusively in simple design domains –
i.e. domains where tasks are brief, situational
complexity is low, few actors and forces
determine events, and so on.

Predicting performance in more challenging
task domains requires an operator model that
can function effectively in demanding task

environments. Existing human models have
typically lacked several very important
capabilities including those needed to cope with
varied forms of uncertainty inherent in many
task environments; manage limited cognitive,
perceptual, and motor resources; and, manage
multiple, periodic tasks. These capabilities have
been incorporated into a human operator model
called APEX (Freed, 1997a; Freed, 1997b) by
adapting techniques from the field of artificial
intelligence.

APEX has been applied to simulate air traffic
controller behavior (ATC), a task domain that
presents a variety of challenges for human
modeling. Expert performance in this domain
requires coping with uncertainty, managing
limited resources, and managing multiple tasks
– challenges one would expect in many other
design domains of practical interest. This paper
uses the air traffic control domain to illustrate a
five-step process for employing APEX to aid
design in a new domain.

1. Constructing a simulated world
2. Task analysis
3. Scenario development
4. Running the Simulation
5. Analyzing simulation results

The paper is organized as follows. Section 2
describes a scenario that sometimes occurs in an

Method when redesign
cost

method use
cost

demanding task
environments

method
effectiveness

User testing late high high yes high
Guidelines early low low no low

Walkthrough early low low no medium
Simulation early low medium yes medium

Table 1 Comparison of usability evaluation methods

APEX ATC simulation; the scenario illustrates
how APEX simulation fits into the overall
design process and exemplifies its use in
predicting operator error. Subsequent sections
discuss each of the five steps listed above for
preparing and using an APEX model to aid in
design.

2 Example scenario

At a TRACON air traffic control facility, one
controller will often be assigned to the task of
guiding planes through a region of airspace
called an arrivals sector. This task involves
taking planes from various sector entry points
and getting them lined up at a safe distance
from one another on landing approach to a
particular airport. Some airports have two
parallel runways. In such cases, the controller
will form planes up into two lines.

Occasionally, a controller will be told that one of
the two runways is closed and that all planes on
approach to land must be directed to the
remaining open runway. A controller's ability to
direct planes exclusively to the open runway
depends on remembering that the other runway
is closed. How does the controller remember
this important fact? Normally, the diversion of
all inbound planes to the open runway produces
an easily perceived reminder. In particular, the
controller will detect only a single line of planes
on approach to the airport, even though two
lines (one to each runway) would normally be
expected (see figure 1a and 1b).

However, problems may arise in conditions of
low workload. With few planes around, there is
no visually distinct line of planes to either
runway. Thus, the usual situation in which both
runways are available is perceptually
indistinguishable from the case of a single
closed runway (figure 1c and 1d). The lack of
perceptual support would then force the
controller to rely on memory alone, thus
increasing the chance that the controller will
accidentally direct a plane to the closed runway.

Designing to prevent such problems is not
especially difficult – it is only necessary to
depict the runway closure condition prominently

on the controller’s information display. The
difficulty lies in anticipating the problem. By
generating plausible scenarios, some containing
operator error, APEX can direct an interface
designer's attention to potential usability
problems. Though perhaps obvious from
hindsight, such errors could easily be overlooked
until a late stage of design.

The ability to explicate events (including
cognitive events) leading to the error can help
indicate alternative ways to refine an interface.
For example, one of the difficulties in designing
a radar display is balancing the need to present a
large volume of information against the need to

(a) Normal workload: Both runways
open

(b) Low workload: Both runways
open

(c) Normal workload: Left runway
closed

(d) Low workload: Left runway
closed

Figure 1 Radar displays for approach control

keep the display uncluttered. In this case, by
showing how the error results from low traffic
conditions, the model suggests a clever fix for
the problem: prominently depict runway
closures only in low workload conditions when
the need for a reminder is greatest and doing so
produces the least clutter.

3 Constructing a simulated world

The first step in simulating a human-machine
system involves implementing software
components specific to the task domain.
Because the domain model used for simulation
will almost inevitably require simplifying from
the real domain, the exact nature of the tasks the
simulated operators will have to carry out cannot
be known until this step is accomplished.
Constructing software to model the domain thus
precedes representing task knowledge for the
operator model. This software, the simulated
world, should include several components:

??a model of the immediate task

environment including equipment models
specifying the behavior of devices employed
by the simulated operator. In ATC, these
include a radar scope, two-way radio, and
flightstrip board.

??a model of the external environment
specifying objects and agents outside the
operator’s immediate environment. In
ATC, the external environment comprises a
region of airspace over which the controller
has responsibility, airspace outside that
region’s boundaries, a set of airplanes, and
the aircrews controlling those airplanes.

??a scenario control component that allows a
user to define scenario events (e.g. airliner
emergencies, runway closures) and scenario
parameters (e.g. plane arrival rate) and then
insures that these specifications are met in
simulation. See section 5.

In addition, a simulation engine controls the
passage of simulated time and mediates
interactions within and among all simulated
world and simulated operator components. A
simulation engine provided by the CSS
simulation environment, discussed in section 6,
is currently used to run the APEX human
operator model as well as the air traffic control
simulated world described below.

3.1 Air traffic control – a brief overview

APEX has been specified to carry out controller
tasks at a simulated terminal radar control
(TRACON) facility. Controllers at a TRACON
manage most of the air traffic within about 30
miles of a major airport. This region is situated
within a much larger airspace controlled by an
air route traffic control center (ARTCC) –
usually just called “Center.” TRACON space
encompasses small regions of “Tower” airspace,
each controlled by a major or satellite airport
within the TRACON region. Airspace within a
TRACON is normally divided into sectors, each
managed by separate controllers. Pilots must
obtain controller permission to move from one
sector or airspace regime to another.

Controllers and pilots communicate using a two-
way radio, with all pilots in a given airspace
sector using the same radio frequency. Since
only one speaker (controller or pilot) can
broadcast over this frequency at a time,
messages are kept brief to help control
“frequency congestion.” Controllers manage
events in their airspace primarily by giving
clearances (authorizations) to pilots over the
radio. The most common clearances are:

??handoffs: clearances that permit a plane to

enter one’s airspace or, conversely, that tell
a pilot about to exit one’s airspace to seek
permission from the next controller

??altitude clearances: authorizations to
descend or climb. Used at a TRACON
mostly to manage takeoffs and landings, but
also to maintain safe separation between
planes.

??vectors: i.e. clearances to change heading.
The new heading may be specified as an
absolute compass direction (e.g. “two seven
zero” for East), as a turn relative to the
current heading (e.g. “ten degrees left”), or
with respect to a named geographical
position appearing on navigational charts
called a fix (e.g. “go direct to DOWNE”).

??speed clearances: authorizations to change
airspeed. Managing airspeeds is the most
difficult, but in principle the best, way
maintain aircraft separation and to space
arriving planes for landing.

Clearances are issued according to a standard
phraseology (Mills, 1992) to minimize
confusion. For example, to clear United
Airlines flight 219 for descent to an altitude of
1900 feet, a controller would say, “United two
one niner, descend and maintain one thousand
nine hundred.” The pilot would then respond
with a readback – “United two one niner,
descending to one thousand nine hundred” –
thus confirming to the controller that the
clearance was received and heard correctly.

The radar display is the controller’s main
source of information about current airspace
conditions. Each aircraft is represented as an
icon whose position on the display corresponds
to its location above the Earth’s surface. Planes
equipped with a device called a C- or S-mode
transponder, including all commercial airliners,
cause an alphanumeric datablock to be
displayed adjacent to the plane icon. Datablocks
provide important additional information
including altitude, airspeed, airplane type (e.g.
747), and identifying callsign. Further
information, including the airplane’s planned
destination, can be found on paper flightstrips
located on a “flightstrip board” near the radar
display.

As a plane approaches TRACON airspace from
a Center region, it appears on the scope as a
blinking icon. The controller gives permission
for the plane to enter – i.e. accepts a handoff –
by positioning a pointer over the icon and then
clicking a button. The two-way radio on board
the aircraft automatically changes frequency,
allowing the pilot to communicate with the new
controller. Some planes are not equipped for
automatic handoffs, in which case a specific
verbal protocol is used:

Example: as a small Cherokee aircraft with
callsign 8458R approaches Los Angeles
TRACON airspace, the pilot manually
changes the radio setting and announces,
“LA approach, Cherokee eight four five eight
romeo, ten miles north of Pasadena, at four
thousand feet, landing.” After detecting the
plane on the radar scope, the controller
announces “Cherokee eight four five romeo,
radar contact,” thereby clearing the plane to
operate in LA TRACON airspace.

Standard operating procedures specify nearly
every aspect of routine air traffic control at a
TRACON, including the time window within
which certain clearances should be issued and
the flight paths planes should be made to
traverse on departure from and landing
approach to airports. To continue with the
previous example, the following event sequence
illustrates a typical (though simplified) landing
approach:

??After announcing radar contact, the

controller locates the Cherokee’s paper
flight strip, determines that its destination
is Los Angeles International airport
(LAX), and selects an appropriate path
from the plane’s present position.

??The controller vectors the plane along the
first leg on this path, saying “Cherokee five
eight romeo, cleared direct for DOWNE.”
The pilot acknowledges with a readback.

??While the plane travels to the DOWNE fix,
the controller observes it periodically to
insure separation from other aircraft and to
determine a safe time to clear it to the
correct altitude for the LAX final
approach. When appropriate, the
controller says, “Cherokee five eight
romeo, descend and maintain one thousand
nine hundred.”

??As the Cherokee approaches DOWNE, the
controller selects a preferred runway and
then locates a gap in the line of planes
approaching that runway. Vectors and
speed clearances are used to maneuver it
into the gap at safe distance from other
aircraft. For example, the plane may need
to be 5 miles behind a 747 and 3 miles
ahead of whatever follows.

??Finally, as the plane nears LAX Tower
airspace, the controller initiates a handoff
to Tower by saying “Cherokee five eight
romeo, cleared for ILS approach. Contact
tower at final approach fix.”

3.2 ATC simulation: defining an airspace

A TRACON is typically divided into separate
airspace sectors, each handled by one or more
individual controllers. The number of sectors
usually varies over the course of a day to reflect
the amount of expected air traffic. During high-
traffic periods, the overall airspace is divided

into smaller sectors, thus reducing the number
of planes any particular controller needs to
handle. For simplicity, the ATC simulation
software divides the overall airspace into an
arrivals sector and a departures sector, each
handled by a single controller. Examples
throughout this document will center on the
arrival sector controller at Los Angeles
TRACON.

Users can easily define new airspace models in
the simulated ATC world. Such models consist
of three kinds of objects: airports, fixes, and
regions. Defining an airport or fix causes all
simulated pilots in the simulated ATC world to
know its location; the controller can thus vector
planes “direct to” that location. Defining an
airport also creates an ATC Tower to which the
control of a plane can be handed off. When
control of a plane passes to an airport Tower,
the plane icon on the simulated radar display
disappears soon thereafter.

Regions define operationally significant areas of
airspace, possibly but not necessarily
corresponding to legal divisions, and not usually
encompassed by explicit boundaries on the
display. They provide a usefully coarse way to
represent plane location, allowing a controller to
refer to the area, e.g., “between DOWNE and
LAX.” The ability to consider airspace regions
allows the simulated controller to assess air
traffic conditions, facilitates detection of
potential separation conflicts, and provides a
basis for determining when planes have strayed
from the standard flight path. Regions are
essentially psychological constructs and are
therefore properly part of the agent model, not
the domain model. However, regions need to
be represented in the same coordinate system as
fixes and airports, making it convenient to
specify all of them together.

3.3 ATC simulation: controller tasks

In the simulated world, as in the real world, the
task of handling an arrival is entirely routine.
Most planes arrive from Center space via one of
a few pre-established airspace “corridors.” The
controller periodically checks for new arrivals,
represented as blinking plane icons, and then
accepts control from center by clicking a mouse
button over their icons. Once control of a new

plane has been established, the paper flight strip
associated with the plane is consulted to
determine the flight’s planned destination and
then marked (or moved) to indicate a change
from pending to active status. The simulated
world uses “electronic flightstrips” in
accordance with somewhat controversial
proposals to transfer flightstrip information to
the controller’s information display (Stein,
1993; Vortac, 1993). The task of routing a
plane to its destination – either an airport or a
TRACON airspace exit point – proceeds in
simulation the same as it does in reality (see
example in previous section).

While controllers’ tasks are mostly simple and
routine when considered in isolation the need to
manage multiple tasks presents significant
challenge. For instance, the controller cannot
focus on one aircraft for its entire passage
through TRACON airspace, but must instead
interleave effort to handle multiple planes.
Similarly, routine scanning of the radar display
to maintain awareness of current conditions
often must be interrupted to deal with situations
discovered during the scanning process, and
then later resumed. A further source of
challenge is the possibility that certain unusual
events may arise and require the controller to
adapt routine behavior. For example, if one of
the runways at LAX closes unexpectedly, the
controller will have to remember to route planes
only to the remaining open runway and may
have to reduce traffic flow in certain regions to
prevent dangerous crowding.

4 Task Analysis

APEX, like other human simulation models,
consists of general-purpose components such as
eyes, hands, and working memory; it requires
the addition of domain-specific knowledge
structures to function in any particular task
domain. Task analysis is the process of
identifying and encoding the necessary
knowledge (Mentemerlo, 1978; Kirwan, 1992).
For highly routinized task domains such as air
traffic control, much of the task analysis can be
accomplished easily and fairly uncontroversially
by reference to published procedures.

For instance, to clear an airplane for descent to a
given altitude, a controller uses a specific verbal

procedure prescribed in the controller
phraseology handbook (see Mills, 1992) – e.g.
“United two one niner, descend and maintain
flight level nine thousand.” Other behaviors
such as maintaining an awareness of current
airspace conditions do not correspond to any
written procedures. These aspects of task
analysis require inferring task representation
from domain attributes and general assumptions
about adaptive human learning processes. This
section introduces the notational formalism
(PDL) used in APEX to represent task analyses
and discusses the role of adaptive learning in
determining how agents come to perform tasks.

4.1 An expressive language for task analyses

In APEX, tasks analyses are represented using
the APEX Procedure Definition Language
(PDL), the primary element of which is the
procedure. A procedure in PDL represents an
operator’s knowledge about how to perform
routine tasks. For instance, a procedure for
clearing a plane to descend has the following
form:

 (procedure
 (index (clear-to-descend ?plane ?altitude))
 (step s1 (determine-callsign-for-plane ?plane

 => ?callsign))
 (step s2 (say ?callsign) (waitfor ?s1)
 (step s3 (say “descend and maintain flight

level”) (waitfor ?s2))
 (step s4 (say ?altitude) (waitfor ?s3))
 (step s5 (terminate) (waitfor ?s4)))

The index clause in the procedure above
indicates that the procedure should be retrieved
from memory whenever a goal to clear a given
plane for descent to a particular altitude
becomes active. Step clauses prescribe
activities that need to be performed to
accomplish this. The first step activates a new
goal: to determine the identifying callsign for
the specified airplane and to make this
information available to other steps in the
procedure by associating it with the variable
?callsign. Achieving this step entails finding a
procedure whose index clause matches the form

 (determine-callsign-for-plane ?plane)

and then executing its steps. After this, say
actions prescribed in steps s2, s3, and s4 are
carried out in order. This completes the phrase
needed to clear a descent. Finally, step s5 is
executed, terminating the procedure.

The activities defined by steps of a PDL
procedure are assumed to be concurrently
executable. When a particular order is desired,
this must be specified explicitly using the
waitfor clause. In this case, all steps but the
first are defined to wait until some other task
has terminated. Second, although this task is
complete when all of its steps are complete, it is
sometimes desirable to allow procedures to

specify more complex, variable completion
conditions. For example, it may be useful to
allow race conditions in which the procedure
completes when any of several steps are
complete. Thus, rather than handle termination
uniformly for all procedures, termination
conditions must be notated explicitly in each
procedure.

The ability to specify how concurrent execution
should be managed and to specialize termination
conditions for each procedure exemplify an
attempt with PDL to provide a uniquely flexible
and expressive language for task analysis. In
particular, PDL can be considered an extension
to the GOMS approach (Card, 1983) in which
tasks are analyzed in terms of four constructs:
goals, operators, methods, and selection rules.
Procedure structures in PDL combine and
extend the functionality provided by GOMS
methods and selection rules. GOMS operators
represent basic skills such as pressing a button,
saying a phrase, or retrieving information from
working memory; executing an operator
produces action directly. PDL does not produce
action directly, but instead sends action requests
(signals) to cognitive, perceptual, and motor
resources in the APEX resource architecture.
What action, if any, should be executed is
determined by the relevant resource model.

It is important to distinguish PDL procedures
from externally represented procedures such as
those that appear in manuals. PDL procedures
are internal (cognitive) representations of how to
accomplish a task (Anderson, 1995). In some
cases, as above, there is a one to one
correspondence between the external
prescription for accomplishing a task and how it
is represented internally. But written procedures
might also correspond to multiple PDL
procedures, especially when written procedures
cover conditional activities (i.e. carried out
sometimes but not always) or activities that take
place over a long period of time. Similarly,
PDL procedures may describe behaviors such as
how to scan the radar display that result from
adaptive learning processes and are never
explicitly taught.

4.2 Approximating adaptive learning

Task analysis is often used to help designers
better understand how human operators function

in existing human-machine systems (Hutchins,
1995). In such cases, task analysis can be
usefully (though not altogether accurately)
viewed as a linear process in which a task
analyst observes operators performing their job,
infers underlying cognitive activities based on
regularities in overt behavior, and then
represents these activities in the context of some
general cognitive model.

A different process is required to predict how
tasks will be carried out with newly designed
equipment and procedures. In particular,
analysis can no longer start with observations of
overt behavior since no real operators have been
trained with the new procedures and no physical
realization of the new equipment exists.
Instead, cognitive structures underlying behavior
must be inferred based on task requirements and
an understanding of the forces that shape task-
specific cognition: human limitations, adaptive
learning processes, and regularities in the task
domain.

For example, to model how a controller might
visually scan the radar display to maintain
awareness of current airspace conditions, an
analyst should consider a number of factors.
First, human visual processing can only attend
to, and thus get information about, a limited
portion of the visual field at any one time. By
attending to one region of the display, a
controller obtains an approximate count of the
number of planes in that region. He or she
identifies significant plane clusters or other
Gestalt groups and can detect planes that differ
from all others in the region on some simple
visual property such as color or orientation.

But to ascertain other important information
requires a narrower focus of attention. For
example, to determine that two planes are
converging requires attending exclusively to
those planes. Similarly, to determine that a
plane is nearing a position from which it should
be rerouted requires attending to the plane or to
the position. These visual processing constraints
have important implications for how visual
scanning should be modeled. For example, to
maintain adequate situation awareness, the
model should shift attention not only to display
regions but also to individual planes within
those regions.

An assumption that the human operator adapts
to regularities in the task environment has
further implications. For instance, if a certain
region contains no routing points and all planes
in the region normally travel in a single
direction, there would usually be no reason to
attend to any particular plane unless it strayed
from the standard course. Adaptive mechanisms
could modify routine scanning procedures to
take advantage of this by eliminating
unnecessary attention shifts to planes in that
region. This saves the visual attention resource
for uses more likely to yield important
information.

A fully mature approach to human modeling
will require techniques for identifying or
predicting regularities in the domain and
detailed guidelines for predicting how adaptive
learning processes will shape behavior in
accordance with these regularities. A few such
guidelines have been considered in discussions
of particular knowledge representation problems
(Freed, 1997a), and somewhat more general
principles were discussed as part of APEX’s
overall modeling methodology (Freed, 1997b).
However, the present work has only begun to
address this important issue.

5 Scenario development

The third step in preparing an APEX simulation
run is to develop scenarios. A scenario
specification includes any parameters and
conditions required by the simulated world. In
general, these can include initial state, domain-
specific rate and probability parameters, and
specific events to occur over the course of a
simulation (see list below). In the current
implementation of the simulation, initial
conditions do not vary. In particular, the
simulated controller always begins the task with
an empty airspace (rather than having to take
over an active airspace) and with the same set of
goals. The goals are to maintain safe separation
between all planes, get planes to their
destination in a timely fashion, stay aware of
current airspace conditions, and so on.

?? initial agent goals
?? initial operating conditions
?? specialized parameters such as the rate

and likelihood of certain events

?? specific events to occur during the
simulation run

At minimum, a scenario must include a duration
D and an aircraft count C. The scenario control
component will randomly generate C plane
arrival events over the interval D, with aircraft
attributes such as destination, aircraft type, and
point of arrival determines according to default
probabilities. For instance, the default specifies
that a plane’s destination will be LAX with p(.7)
and Santa Monica airport with p(.3). The
default includes conditional probabilities – e.g.
the destination airport affects the determination
of airplane type – e.g. a small aircraft such as a
Cherokee is much more likely to have Santa
Monica as its destination.

Scenario definitions can alter these default
probabilities, and thereby affect the timing and
attributes of events generated by the scenario
control component. Users can also specify
particular events to occur at particular times.
For example, one might want to specify a
number of small aircraft arrivals all around the
same time in order to check how performance is
affected by a sudden increase in workload.
Currently, arrivals are the only kind of event
that the scenario control component generates
randomly. Special events such as runway
closures and aircraft equipment failures must be
specified individually.

6 Running the Simulation

To employ the operator model, world model,
and scenario control elements in simulation
requires a simulation engine. APEX currently
uses the simulation engine provided by CSS
(Remington, et al., 1990a), a simulation package
developed at NASA Ames that also includes a
model development environment, a graphical
interface for observing an ongoing simulation,
and mechanisms for analyzing and graphing
temporal data from a simulation run.

CSS simulation models consist of a network of
process and store modules, each depicted as a
“box” on the graphical interface. Stores are
simply repositories for information, though they
may be used to represent complex systems such
as human working memory. Process modules, as
the name implies, cause inputs to be processed

and outputs to be produced. A process has five
attributes: (1) a name; (2) a body of LISP code
that defines how inputs are mapped to outputs;
(3) a set of stores from which it takes input; (4)
a set of stores to which it provides output; and
(5) a stochastic function that determines its
finishing time – how much simulated time is
required for new inputs to be processed and the
result returned as output. A process is idle until
a state change occurs in any of its input stores.
This activates the process, causing it to produce
output in accordance with its embedded code
after an interval determined by its characteristic
finishing time function.

The CSS simulation engine is an event-driven
simulator. Unlike time-slice simulators, which
advance simulated time by a fixed increment, an
event-driven simulator advances until the next
active process is scheduled to produce an output.
This more efficient method makes it practical to
model systems whose components need to be
simulated at vastly different levels of temporal
granularity. In particular, the APEX human
operator model contains perceptual processes
that occur over tens of milliseconds, motor and
cognitive processes that take hundreds of
milliseconds and (links to) external simulated
world processes modeled at the relatively coarse
temporal granularity of seconds. CSS provides
further flexibility by allowing processes to run
concurrently unless constrained to run in
sequence.

The process of incorporating a model into a CSS
framework is fairly straightforward, but a user
must decide how much detail to include
regarding the model’s temporal characteristics.
In the simplest case, one could model the world
and the operator each as single processes.
Because processes can have only a single
finishing time distribution, such a model would
assume a uniform duration for all operator
activities. For instance, a speech act, a gaze
shift, a grasp action, and a retrieval from
memory would all require the same interval.
The process-store network used to simulate and
visualize APEX behavior models each
component of the APEX architecture as a
separate process.

Once the process-store network has been
constructed, and simulated world and APEX
elements incorporated into the code underlying

processes, the simulation can be run. CSS
provides a “control panel” window with several
buttons. SHOW toggles the visualization
function, causing information in processes and
stores to be displayed and dynamically updated.
START and STOP initiate and freeze a
simulation run. STEP causes time to advance to
the next scheduled process finish event, runs the
scheduled process, and then freezes the
simulation.

7 Simulation analysis

The final step in using APEX is to analyze the
results of simulation. CSS provides tools for
analyzing and graphing temporal aspects of
behavior. For example, if interested in
predicting how much time the controller took to
respond when a new airplane appeared on the
radar display, the modeler could specify that
interest when constructing the process-store
network (see Remington et al., 1990a for how
this is accomplished). CSS automatically stores
specified timing values from multiple simulation
runs and graphs the data on demand.

7.1 Design-facilitated errors

APEX is intended to help predict design-
facilitated errors – i.e. operator errors that
could be prevented or minimized by modifying
equipment or procedure design. The current
approach assumes that people develop
predictable strategies for circumventing their
innate limitations and that these strategies make
people prone to error in certain predictable
circumstances. For instance, to compensate for
limited memory, people sometimes learn to rely
on features of their task environment to act as a
kind of externalized memory. If, for whatever
reason, the relied on feature is absent when it
should be present (or vice-versa), error may
result.

In the wrong runway scenario described in
section 2, the controller’s error stemmed from
reliance on a visually observable feature – an
imbalance in the number of planes approaching
to each runway to signal – to act as a reminder
of runway closure. When workload dropped too
low for this feature to remain observable, the
controller reverted to a behavior consistent with
its absence. In particular, the controller selected

a runway based on factors that had nothing to do
with runway availability such as airplane type
and relative proximity to each runway approach
path.

When this error occurs in simulation, the
sequence of events that led up to it can be
extracted from the simulation trace, a record of
all the events that occurred during the
simulation run. However, this “raw” event data
is not very useful to a designer. To inform the
design process, the events must be interpreted in
light of general knowledge about human
performance. For instance, most errors can be
partially attributed to the non-occurrence of
normal events. The raw simulation data will not
contain any reference to these events, so
normative knowledge must be used to complete
the causal story that explains the error.

As an additional constraint on what constitutes a
useful analysis, the explanation for an error
assign blame to something that the designer has
control (Owens, 1991, makes a similar point).
For instance, citing human memory limitations
as a cause of the above described error is correct,
but not very useful. In contrast, blaming the
failure on the absence of expected perceptual
support for memory implies ways of fixing the
problem. The designer could enforce the
perceptual support (in this instance, by insuring
that planeload never drops too low), provide
alternative perceptual support (a runway closure
indicator on the display), or train the operator
not to expect perceptual support and to take
other measures to support memory.

7.2 Error patterns

We would like to facilitate the generation of
analyses in which non-occurring normal events
are made explicit and causal explanations trace
back to elements of the task environment that
the designer might be able to control. One way
to do this is to represent general knowledge
about the cause of error in error patterns. An
error pattern is a specific type of explanation
pattern (Schank, 1986) – i.e. a stereotypical
sequence of events that end in some kind of
anomaly that needs to be explained (an error in
this case). When an error occurs in simulation,
error patterns whose characteristic anomaly type
matches the “observed” error are compared

against events in the simulation trace. If the
pattern matches events in the simulation trace,
the patter is considered an explanation of the
error.

Error patterns derive from a general theory of
what causes error. To make the idea of error
patterns concrete, the example below describes a
simpler form of error that the one described in
section 2.

Because an APEX human operator model can
only be a coarse approximation of a real human
operator, error predictions emerging from
simulation will not necessarily be problems in
reality. The designer must evaluate the
plausibility and seriousness of any error
predictions on the basis of domain knowledge
and a common sense understanding of human
behavior. Current scientific knowledge about
human error-making is inadequate for
prediction. The APEX approach only attempts
to make designers more effective at applying
their common sense knowledge about when and
why people make errors. Thus, the need for the
user to evaluate model predictions should be
considered compatible with the APEX approach.

 One other aspect of simulation analysis presents
more of a problem. Currently, the modeler must
interpret simulation event data “by hand” on the
basis of informally specified error pattern
knowledge. This approach is far from ideal and,
given the massive mount of simulation data that
must be examined, probably unacceptable for
practical use. To automate analysis, simulation
mechanisms must be augmented to check
observed (i.e. simulated) behavior against
expected behavior and to signal errors when
specified deviations occur. Error patterns
indexed by the anomaly and successfully
matched against the simulation trace would then
be output to the user as error predictions.

8 Conclusion

In safety-critical domains, such as nuclear
power, aerospace, military, medical, and
industrial control systems, the cost and risk of

implementing new technology are major barriers
to progress. The fear of innovation is not based
on superstition, but on the common experience
of failure in complex system development
projects (Curtis et al., 1988). Retaining the
status quo, however, becomes less and less
tenable as existing systems become obsolete and
the cost and risk of maintaining them escalate.

Replacement or significant upgrading of such
safety-critical systems eventually becomes
inevitable. Therefore, it is necessary to attack
the core problem, namely, the lack of a
systematic design method for complex human-
computer systems. It is the absence of such a
methodology that lies at the root of valid
concerns about the safety (Leveson, 1995) and
economic benefit (Landauer, 1995) of new
human-computer systems.

APEX is intended to be a contribution toward
improving the design of safety-critical human-
computer systems, for example, the next-
generation air traffic control system. APEX
incorporates and extends many of the functional
elements of the MIDAS system (Corker, 1993,
1995), particularly computational models of the
physical and informational environment:
equipment, geography, regulatory constraints,
documents, and displays.

The key innovations of APEX are its integrated
approaches to task analysis, procedure
definition, and intelligent, resource-constrained
multi-tasking. This paper has presented a step-
by-step description of how APEX is used, from
scenario development through trace analysis.

The development of APEX is itself an exercise
in iterative design. Current work is aimed at
extending the modeling framework, developing
new applications, and validating partial models
(see Homer, 1997). The goal remains to reduce
the cost and risk of the implementation of
complex human-computer systems, by
addressing key human-interaction issues as early
as possible in the design process.

Example:

The UNIX command rm normally deletes files, thus freeing up hard drive space, but can be redefined to
move files into a “trash” directory instead. A user unaware that rm has been redefined may try to use it
to make space on the disk for a new file. After typing the command, the system returns a new command
line prompt but does not describe the outcome of the command just given. As this response was the
expected result of a successful delete, the user believes that the action succeeded in freeing up disk space.

The following general causal sequence constitutes an error pattern that can be specified to match the
above incident:

agent wants G, achievable
by action A with prereq P

agent believes not(P)

agent believes action B
results in P and observable
event E

B actually results in Q (=P)
which produces event E

TIME-1
agent does B and
 observes E

agent believes P
achieved

agent believes A
will achieve G

agent does A which
fails to achieve G

TIME-2 TIME-3

G = get non-local file
A = ftp <file-name>..
B = rm <file-name>
P = disk space available
Q = disk space unchaned
E = command line prompt

9 References

[Anderson, 1995] Anderson, J.R. (1995)
Cognitive psychology and its implications
(fourth edition), San Francisco: W.H. Freeman.

[Card, 1983] Card, S.K., Moran, T.P., &
Newell, A. (1983). The psychology of human-
computer interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates.

[Corker, 1993] Corker, K.M., & Smith, B.
(1993). An architecture and model for cognitive
engineering simulation analysis: Application to
advanced aviation analysis. AIAA Conference
on Computing in Aerospace. San Diego, CA.

[Corker, 1995] Corker, K.M. & Pisanich, G.M.
(1995). Analysis and modeling of flight crew
performance in automated air traffic
management systems. Proceedings of the 6th
IFAC/IFIP/IFORS/IEA Symposium: Analysis,
Design, and Evaluation of Man-Machine
Systems. Boston, MA.

[Curtis et al., 1988] Curtis, B., Krasner, H., &
Iscoe, N. (1988). A field study of the software
design process for large systems.
Communications of the ACM, 31, 1268-1287.

[Freed, 1997a] Freed, M.A. & Remington, R.W.
(1997). Managing decision resources in plan
execution. In Proceedings of the Fifteenth Joint
Conference on Artificial Intelligence. Nagoya,
Japan.

[Freed, 1997b] Freed, M. & Shafto, M. (1997).
Human-system modeling: some principles and a
pragmatic approach. Proceedings of the Fourth
International Workshop on the Design,
Specification, and Verification of Interactive
System. Granada, Spain.

[Gould, 1988] Gould, J.D. (1988). How to
design usable systems. In M. Helander (Ed.),
Handbook of Human-Computer Interaction.
New York: North-Holland.

[Homer, 1997] Homer, J.B. (1997). Structure,
data and compelling conclusions: Notes from
the field. System Dynamics Review, 13, 293-
309.

[Hutchins, 1995] Hutchins, E. (1995). Cognition
in the wild. Cambridge, MA: MIT Press.

[Kirwan, 1992] Kirwan, B. and Ainsworth, L.
(1992). A guide to task analysis. London:
Taylor and Francis.

[Landauer, 1995] Landauer, T.K. (1995). The
trouble with computers. Cambridge, MA: MIT
Press (Bradford).

[Leveson, 1995] Leveson, N.G. (1995).
Safeware: System safety and computers.
Reading, MA: Addison-Wesley.

[Mentemerlo, 1978] Mentemerlo, M.D. and
Eddowes, E. (1978). The judgmental nature of
task analysis. In Proceedings of the Human
Factors Society, pp. 247-250. Santa Monica,
CA.

[Mills, 1992] Mills, T.S. & Archibald, J.S.
(1992). The pilot’s reference to ATC procedures
and terminology. Van Nuys, CA: Reavco
Publishing.

[Mosier, 1986] Mosier, J.N. & Smith, S.L.
(1986). Applications of guidelines for designing
user interface software. Behavior and
Information Technology, 5, 39-46, 1986.

[Owens, 1991] Owens, C. (1991). A functional
taxonomy of abstract plan failures. In
Proceedings of the Annual Conference of the
Cognitive Science Society. Chicago, IL.

[Polson et al., 1992] Polson, P., Lewis, C.,
Rieman, J., Wharton, C., and Wilde, N. (1992).
Cognitive Walkthroughs: A method for theory-
based evaluation of user interfaces.
International Journal of Man-Machine Studies,
36, 741-773.

[Remington, et al., 1990a] Remington, R.W.,
Johnston, J.C., Bunzo, M.S., & Benjamin, K.A.
The Cognition Simulation System: An
interactive graphical tool for modeling human
cognitive processing. In Object-Oriented
Simulation. San Diego: Society for Computer
Simulation, pp. 155-166, 1990.

[Remington, 1990b] Remington, R.W., &
Shafto, M.G. (1990). Building human interfaces

to fault diagnostic expert systems I: Designing
the human interface to support cooperative fault
diagnosis. Seattle, WA: CHI'90 Workshop on
Computer-Human Interaction in Aerospace
Systems.

[Schank, 1986] Schank, R.C. (1986).
Explanation patterns. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1986.

[Shafto, 1990] Shafto, M.G., & Remington,
R.W. (1990). Building human interfaces to fault
diagnostic expert systems II: Interface
development for a complex, real-time system.
Seattle, WA: CHI'90 Workshop on Computer-
Human Interaction in Aerospace Systems.

[Smith, 1986] Smith, S.L., & Mosier, J.N.
(1986). Guidelines for designing operator
interface software. Tech. Rept. No. MTR-10090.
McClean, VA: MITRE Corporation.

[Stein, 1993] Stein, E.S. & Garland, D. (1993).
Air traffic controller working memory:
considerations in air traffic control tactical
operations. FAA technical report
DOT/FAA/CT-TN93/37, 1993.

[Vortac, 1993] Vortac, O.U., Edwards, M.B., &
Fuller, D.K. (1993). Automation and cognition
in air traffic control: An empirical investigation.
Applied Cognitive Psychology, 7, 631-651.

